
Signal Processing Toolbox™
Getting Started Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Signal Processing Toolbox™ Getting Started Guide
© COPYRIGHT 2006–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2006 First printing New for Version 6.6 (Release 2006b)
March 2007 Online only Revised for Version 6.7 (Release 2007a)
September 2007 Online only Revised for Version 6.8 (Release 2007b)
March 2008 Online only Revised for Version 6.9 (Release 2008a)
October 2008 Online only Revised for Version 6.10 (Release 2008b)
March 2009 Online only Revised for Version 6.11 (Release 2009a)
September 2009 Online only Revised for Version 6.12 (Release 2009b)
March 2010 Online only Revised for Version 6.13 (Release 2010a)
September 2010 Online only Revised for Version 6.14 (Release 2010b)
April 2011 Online only Revised for Version 6.15 (Release 2011a)
September 2011 Online only Revised for Version 6.16 (Release 2011b)
March 2012 Online only Revised for Version 6.17 (Release 2012a)
September 2012 Online only Revised for Version 6.18 (Release 2012b)
March 2013 Online only Revised for Version 6.19 (Release 2013a)
September 2013 Online only Revised for Version 6.20 (Release 2013b)
March 2014 Online only Revised for Version 6.21 (Release 2014a)
October 2014 Online only Revised for Version 6.22 (Release 2014b)
March 2015 Online only Revised for Version 7.0 (Release 2015a)
September 2015 Online only Revised for Version 7.1 (Release 2015b)
March 2016 Online only Revised for Version 7.2 (Release 2016a)
September 2016 Online only Revised for Version 7.3 (Release 2016b)
March 2017 Online only Revised for Version 7.4 (Release 2017a)
September 2017 Online only Revised for Version 7.5 (Release 2017b)
March 2018 Online only Revised for Version 8.0 (Release 2018a)
September 2018 Online only Revised for Version 8.1 (Release 2018b)
March 2019 Online only Revised for Version 8.2 (Release 2019a)
September 2019 Online only Revised for Version 8.3 (Release 2019b)
March 2020 Online only Revised for Version 8.4 (Release 2020a)
September 2020 Online only Revised for Version 8.5 (Release 2020b)
March 2021 Online only Revised for Version 8.6 (Release 2021a)

Overview
1

Signal Processing Toolbox Product Description . 1-2
Key Features . 1-2

Basic Signal Processing Concepts
2

Representing Signals . 2-2
Numeric Arrays . 2-2
Vector Representation . 2-2

Waveform Generation: Time Vectors and Sinusoids 2-3

Impulse, Step, and Ramp Functions . 2-4

Common Periodic Waveforms . 2-6

Common Aperiodic Waveforms . 2-9

The pulstran Function . 2-11

The Sinc Function . 2-13

The Dirichlet Function . 2-14

Working with Data . 2-16
Data Precision . 2-16

Selected Bibliography . 2-17

Design a Filter with fdesign and Filter Builder
3

Filter Design Process Overview . 3-2

Design a Filter Using fdesign . 3-3

Design a Filter Using Filter Builder . 3-7

v

Contents

Filter Design with the Filter Designer App
4

Introduction . 4-2

Designing the Filter . 4-3

Analyzing the Filter . 4-6

Designing Additional Filters . 4-8

Viewing and Annotating the Filter . 4-9
Viewing the Filter in FVTool . 4-9
Using FVTool for Annotation . 4-12

Exporting Filters from Filter Designer . 4-13
Filtering with dfilt . 4-14

Designing Filters Using Command Line Functions 4-16

vi Contents

Overview

1

Signal Processing Toolbox Product Description
Perform signal processing and analysis

Signal Processing Toolbox provides functions and apps to analyze, preprocess, and extract features
from uniformly and nonuniformly sampled signals. The toolbox includes tools for filter design and
analysis, resampling, smoothing, detrending, and power spectrum estimation. The toolbox also
provides functionality for extracting features like changepoints and envelopes, finding peaks and
signal patterns, quantifying signal similarities, and performing measurements such as SNR and
distortion. You can also perform modal and order analysis of vibration signals.

With the Signal Analyzer app you can preprocess and analyze multiple signals simultaneously in time,
frequency, and time-frequency domains without writing code; explore long signals; and extract
regions of interest. With the Filter Designer app you can design and analyze digital filters by choosing
from a variety of algorithms and responses. Both apps generate MATLAB® code.

Key Features
• Signal Analyzer App for visualizing and comparing signals simultaneously in time, frequency, and

time-frequency domains
• FIR and IIR filter design and analysis
• Algorithms for finding signal similarities, envelopes, patterns, changepoints, peaks, and outliers
• Measurements such as transition and pulse metrics, band power, bandwidth, and distortion
• Power spectrum estimation of uniformly and nonuniformly sampled data
• Order analysis of vibration signals and modal analysis of mechanical systems

1 Overview

1-2

Basic Signal Processing Concepts

• “Representing Signals” on page 2-2
• “Waveform Generation: Time Vectors and Sinusoids” on page 2-3
• “Impulse, Step, and Ramp Functions” on page 2-4
• “Common Periodic Waveforms” on page 2-6
• “Common Aperiodic Waveforms” on page 2-9
• “The pulstran Function” on page 2-11
• “The Sinc Function” on page 2-13
• “The Dirichlet Function” on page 2-14
• “Working with Data” on page 2-16
• “Selected Bibliography” on page 2-17

2

Representing Signals
In this section...
“Numeric Arrays” on page 2-2
“Vector Representation” on page 2-2

Numeric Arrays
The central data construct in the MATLAB environment is the numeric array, an ordered collection of
real or complex numeric data with two or more dimensions. The basic data objects of signal
processing (one-dimensional signals or sequences, multichannel signals, and two-dimensional signals)
are all naturally suited to array representation.

Vector Representation
MATLAB represents ordinary one-dimensional sampled data signals, or sequences, as vectors. Vectors
are 1-by-n or n-by-1 arrays, where n is the number of samples in the sequence. One way to introduce
a sequence is to enter it as a list of elements at the command prompt. The statement

x = [4 3 7 -9 1];

creates a simple five-element real sequence in a row vector. Transposition turns the sequence into a
column vector

x = x';

x =
 4
 3
 7
 -9
 1

Column orientation is preferable for single channel signals because it extends naturally to the
multichannel case. For multichannel data, each column of a matrix represents one channel. Each row
of such a matrix then corresponds to a sample point. A three-channel signal that consists of x, 2x,
and x/π is

y = [x 2*x x/pi]

y =
 4.0000 8.0000 1.2732
 3.0000 6.0000 0.9549
 7.0000 14.0000 2.2282
 -9.0000 -18.0000 -2.8648
 1.0000 2.0000 0.3183

If the sequence has complex-valued elements, the transpose operator takes the conjugate of the
sequence elements. To transform a complex-valued row vector into a column vector without taking
conjugates, use the .' or non-conjugate transpose:

x = [1-i 3+i 2+3*i 4-2*i]; % 1-by-4 vector
x = x.'; % 4-by-1 vector

2 Basic Signal Processing Concepts

2-2

Waveform Generation: Time Vectors and Sinusoids
Most toolbox functions require you to begin with a vector representing a time base. Consider
generating data with a 1000 Hz sample frequency, for example. An appropriate time vector is

t = (0:0.001:1)';

where the MATLAB® colon operator (:) creates a 1001-element row vector that represents time
running from 0 to 1 seconds in steps of 1 ms. The transpose operator (') changes the row vector into
a column; the semicolon (;) tells MATLAB to compute, but not display, the result.

Given t, you can create a sample signal y consisting of two sinusoids, one at 50 Hz and one at 120 Hz
with twice the amplitude.

y = sin(2*pi*50*t) + 2*sin(2*pi*120*t);

The new variable y, formed from vector t, is also 1001 elements long. You can add normally
distributed white noise to the signal and plot the first 50 points:

yn = y + 0.5*randn(size(t));
plot(t(1:50),yn(1:50))

 Waveform Generation: Time Vectors and Sinusoids

2-3

Impulse, Step, and Ramp Functions
Since MATLAB® is a programming language, an endless variety of different signals is possible. Here
are some statements that generate a unit impulse, a unit step, a unit ramp, and a unit parabola.

t = (-1:0.01:1)';

impulse = t==0;
unitstep = t>=0;
ramp = t.*unitstep;
quad = t.^2.*unitstep;

All of these sequences are column vectors that inherit their shapes from t. Plot the sequences.

plot(t,[impulse unitstep ramp quad])

Generate and plot a square wave with period 0.5 and amplitude 0.81.

sqwave = 0.81*square(4*pi*t);
plot(t,sqwave)

2 Basic Signal Processing Concepts

2-4

 Impulse, Step, and Ramp Functions

2-5

Common Periodic Waveforms
Signal Processing Toolbox™ provides functions for generating widely used periodic waveforms.

• sawtooth generates a sawtooth wave with peaks at ±1 and a period of 2π. An optional width
parameter specifies a fractional multiple of 2π at which the signal maximum occurs.

• square generates a square wave with a period of 2π. An optional parameter specifies the duty
cycle, the percent of the period for which the signal is positive.

Generate 1.5 seconds of a 50 Hz sawtooth wave with a sample rate of 10 kHz. Plot 0.2 seconds of the
generated waveform.

fs = 10e3;
t = 0:1/fs:1.5;
x = sawtooth(2*pi*50*t);

plot(t,x)
axis([0 0.2 -1 1])

Generate 1.5 seconds of a 50 Hz square wave with a sample rate of 10 kHz. Specify a duty cycle of
25%. Plot 0.2 seconds of the generated waveform.

fs = 10e3;
t = 0:1/fs:1.5;
x = square(2*pi*50*t,25);

2 Basic Signal Processing Concepts

2-6

plot(t,x)
axis([0 0.2 -1 1])

Use the dutycycle function to verify that the duty cycle of the square wave is the specified value.
Use the function with no output arguments to plot the waveform, the location of the mid-reference
level instants, the associated reference levels, the state levels, and the associated lower and upper
state boundaries.

dc = dutycycle(x,fs);
dc = dc(1)

dc = 0.2500

dutycycle(x,fs);
xlim([0 0.2])

 Common Periodic Waveforms

2-7

See Also
dutycycle | sawtooth | square

2 Basic Signal Processing Concepts

2-8

Common Aperiodic Waveforms
Signal Processing Toolbox™ provides functions for generating several widely used aperiodic
waveforms.

• gauspuls generates a Gaussian-modulated sinusoidal pulse with a specified time, center
frequency, and fractional bandwidth. Optional parameters return in-phase and quadrature pulses,
the RF signal envelope, and the cutoff time for the trailing pulse envelope.

• chirp generates a linear, logarithmic, or quadratic swept-frequency sinusoidal signal. An optional
parameter specifies alternative sweep methods. An optional parameter allows an initial phase to
be specified in degrees.

Compute 2 seconds of a linear chirp signal with a sample rate of 1 kHz that starts at DC and crosses
150 Hz at 1 second.

t = 0:1/1000:2;
y = chirp(t,0,1,150);

Plot the spectrogram of the chirp. Specify 90% of overlap between adjoining windowed segments.

pspectrum(y,t,'spectrogram','OverlapPercent',90)

Use gauspuls to plot a 50 kHz Gaussian RF pulse with 60% bandwidth, sampled at a rate of 1 MHz.
Truncate the pulse where the envelope falls 40 dB below the peak.

tc = gauspuls('cutoff',50e3,0.6,[],-40);
t = -tc : 1e-6 : tc;

 Common Aperiodic Waveforms

2-9

yi = gauspuls(t,50e3,0.6);
plot(t,yi)

See Also
chirp | gauspuls | pspectrum

2 Basic Signal Processing Concepts

2-10

The pulstran Function
The pulstran function generates pulse trains from either continuous or sampled prototype pulses.
This example generates a pulse train consisting of the sum of multiple delayed interpolations of a
Gaussian pulse.

The pulse train is defined to have a sample rate of 50 kHz, a pulse train length of 10 ms, and a pulse
repetition rate of 1 kHz. T specifies the time instants at which the pulse train is sampled. D specifies
the delay to each pulse repetition in the first column and an optional attenuation for each repetition
in the second column. To construct the pulse train, pass the name of the gauspuls function to
pulstran, along with additional parameters that specify a 10 kHz Gaussian pulse with 50%
bandwidth.

T = 0:1/50e3:10e-3;
D = [0:1/1e3:10e-3;0.8.^(0:10)]';

Y = pulstran(T,D,'gauspuls',10e3,0.5);

plot(T,Y)

See “Compute Envelope Spectrum of Vibration Signal” for an example that uses the pulstran
function to generate vibration data for bearing analysis.

 The pulstran Function

2-11

See Also
pulstran

2 Basic Signal Processing Concepts

2-12

The Sinc Function
The sinc function computes the mathematical sinc function for an input vector or matrix x. Viewed
as a function of time, or space, the sinc function is the inverse Fourier transform of the rectangular
pulse in frequency centered at zero, with width 2π and unit height:

sinc x = 1
2π∫−π

π
e jωx dω =

sin πx
πx , x ≠ 0,

1, x = 0 .

To plot the sinc function for a linearly spaced vector with values ranging from −5 to 5, use these
commands:

x = linspace(-5,5);
y = sinc(x);
plot(x,y)
grid

See Also
diric | sinc

 The Sinc Function

2-13

The Dirichlet Function
The function diric computes the Dirichlet function, sometimes called the periodic sinc or aliased
sinc function, for an input vector or matrix x. The Dirichlet function is defined by

D(x) =
sin(Nx/2)
Nsin(x/2) , x ≠ 2πk,

(− 1)k(N − 1), x = 2πk,
k = 0, ± 1, ± 2, ± 3, …

where N is a user-specified positive integer. For N odd, the Dirichlet function has a period of 2π; for
N even, its period is 4π. The magnitude of this function is 1/N times the magnitude of the discrete-
time Fourier transform of the N-point rectangular window.

To plot the Dirichlet function between 0 and 4π for N = 7 and N = 8, use

x = linspace(0,4*pi,300);

subplot(2,1,1)
plot(x/pi,diric(x,7))
title('N = 7')

subplot(2,1,2)
plot(x/pi,diric(x,8))
title('N = 8')
xlabel('x / \pi')

2 Basic Signal Processing Concepts

2-14

See Also
diric | sinc

 The Dirichlet Function

2-15

Working with Data

Data Precision
All Signal Processing Toolbox functions accept double-precision inputs. If you input single-precision
floating-point or integer data types, you should not expect to receive correct results and in many
cases, an error will occur. DSP System Toolbox™ and Fixed-Point Designer™ products enable single-
precision floating-point and fixed-point support for most dfilt structures.

2 Basic Signal Processing Concepts

2-16

Selected Bibliography
Algorithm development for Signal Processing Toolbox functions has drawn heavily upon the
references listed below. All are recommended to the interested reader who needs to know more about
signal processing than is covered in this manual.

References
[1] Crochiere, R. E., and Lawrence R. Rabiner. Multi-Rate Signal Processing. Englewood Cliffs, NJ:

Prentice Hall, 1983. pp. 88–91.

[2] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John Wiley & Sons, 1979.

[3] Jackson, L. B. Digital Filters and Signal Processing. Third Ed. Boston: Kluwer Academic
Publishers, 1989.

[4] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice Hall, 1988.

[5] Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs,
NJ: Prentice Hall, 1989.

[6] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons,
1987.

[7] Percival, D. B., and A. T. Walden. Spectral Analysis for Physical Applications: Multitaper and
Conventional Univariate Techniques. Cambridge: Cambridge University Press, 1993.

[8] Pratt, W. K. Digital Image Processing. New York: John Wiley & Sons, 1991.

[9] Proakis, John G., and Dimitris G. Manolakis. Digital Signal Processing: Principles, Algorithms, and
Applications. Upper Saddle River, NJ: Prentice Hall, 1996.

[10] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1975.

[11] Welch, P. D. “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method
Based on Time Averaging Over Short, Modified Periodograms.” IEEE® Transactions on Audio
and Electroacoustics. Vol. AU-15, 1967. pp. 70–73.

 Selected Bibliography

2-17

Design a Filter with fdesign and Filter
Builder

• “Filter Design Process Overview” on page 3-2
• “Design a Filter Using fdesign” on page 3-3
• “Design a Filter Using Filter Builder” on page 3-7

3

Filter Design Process Overview

Note You must have the Signal Processing Toolbox installed to use fdesign and filterBuilder.
Advanced capabilities are available if your installation additionally includes the DSP System Toolbox
license. You can verify the presence of both toolboxes by typing ver at the command prompt.

Filter design through user-defined specifications is the core of the fdesign approach. This
specification-centric approach places less emphasis on the choice of specific filter algorithms, and
more emphasis on performance during the design a good working filter. For example, you can take a
given set of design parameters for the filter, such as a stopband frequency, a passband frequency, and
a stopband attenuation, and— using these parameters— design a specification object for the filter.
You can then implement the filter using this specification object. Using this approach, it is also
possible to compare different algorithms as applied to a set of specifications.

There are two distinct objects involved in filter design:

• Specification Object — Captures the required design parameters of a filter
• Implementation Object — Describes the designed filter; includes the array of coefficients and the
filter structure

The distinction between these two objects is at the core of the filter design methodology. The basic
attributes of each of these objects are outlined in the following table.

Specification Object Implementation Object
High-level specification Filter coefficients
Algorithmic properties Filter structure

You can run the code in the following examples from the Help browser (select the code, right-click the
selection, and choose Evaluate Selection from the context menu), or you can enter the code on the
MATLAB command line. Before you begin this example, start MATLAB and verify that you have
installed the Signal Processing Toolbox software. If you wish to access the full functionality of
fdesign and filterBuilder, you should additionally obtain the DSP System Toolbox software. You
can verify the presence of these products by typing ver at the command prompt.

3 Design a Filter with fdesign and Filter Builder

3-2

Design a Filter Using fdesign
Use the following two steps to design a simple filter.

1 Create a filter specification object.
2 Design your filter.

Example 3.1. Design a Filter in Two Steps

Assume that you want to design a bandpass filter. Typically a bandpass filter is defined as shown in
the following figure.

In this example, a sampling frequency of Fs = 48 kHz is used. This bandpass filter has the following
specifications, specified here using MATLAB code:

A_stop1 = 60; % Attenuation in the first stopband = 60 dB
F_stop1 = 8400; % Edge of the stopband = 8400 Hz
F_pass1 = 10800; % Edge of the passband = 10800 Hz
F_pass2 = 15600; % Closing edge of the passband = 15600 Hz
F_stop2 = 18000; % Edge of the second stopband = 18000 Hz
A_stop2 = 60; % Attenuation in the second stopband = 60 dB
A_pass = 1; % Amount of ripple allowed in the passband = 1 dB

In the following two steps, these specifications are passed to the fdesign.bandpass method as
parameters.

Step 1
To create a filter specification object, evaluate the following code at the MATLAB prompt:

d = fdesign.bandpass

Now, pass the filter specifications that correspond to the default Specification —
fst1,fp1,fp2,fst2,ast1,ap,ast2. This example adds fs as the final input argument to specify
the sampling frequency of 48 kHz.

>> BandPassSpecObj = ...
 fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2', ...
 F_stop1, F_pass1, F_pass2, F_stop2, A_stop1, A_pass, ...
 A_stop2, 48000)

 Design a Filter Using fdesign

3-3

Note The order of the filter is not specified, allowing a degree of freedom for the algorithm
design in order to achieve the specification. The design will be a minimum order design.

The specification parameters, such as Fstop1, are all given default values when none are
provided. You can change the values of the specification parameters after the filter specification
object has been created. For example, if there are two values that need to be changed, Fpass2
and Fstop2, use the set command, which takes the object first, and then the parameter value
pairs. Evaluate the following code at the MATLAB prompt:

>> set(BandPassSpecObj, 'Fpass2', 15800, 'Fstop2', 18400)

BandPassSpecObj is the new filter specification object which contains all the required design
parameters, including the filter type.

You may also change parameter values in filter specification objects by accessing them as if they
were elements in a struct array.

>> BandPassSpecObj.Fpass2=15800;

Step 2
Design the filter by using the design command. You can access the design methods available for
you specification object by calling the designmethods function. For example, in this case, you
can execute the command

>> designmethods(BandPassSpecObj)

Design Methods for class
fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

After choosing a design method use, you can evaluate the following at the MATLAB prompt (this
example assumes you've chosen 'equiripple'):

>> BandPassFilt = design(BandPassSpecObj, 'equiripple')

BandPassFilt =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x44 double]
 PersistentMemory: false

If you have the DSP System Toolbox installed, you can also design your filter with a filter System
object™. To create a filter System object with the same specification object BandPassSpecObj,
you can execute the commands

>> designmethods(BandPassSpecObj,...
'SystemObject',true)

3 Design a Filter with fdesign and Filter Builder

3-4

Design Methods that support System objects for class
fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

>> BandPassFiltSysObj = design(BandPassSpecObj,...
'equiripple','SystemObject',true)

 System: dsp.FIRFilter

 Properties:
 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [1x44 double]
 InitialConditions: 0
 FrameBasedProcessing: true

 Show fixed-point properties

Available design methods and design options for filter System objects are not necessarily the
same as those for filter objects.

Note If you do not specify a design method, a default method will be used. For example, you can
execute the command

>> BandPassFilt = design(BandPassSpecObj)

BandPassFilt =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x44 double]
 PersistentMemory: false

and a design method will be selected automatically.

To check your work, you can plot the filter magnitude response using the Filter Visualization tool.
Verify that all the design parameters are met:

>> fvtool(BandPassFilt) %plot the filter magnitude response

If you have the DSP System Toolbox installed, the Filter Visualization tool produces the following
figure with the dashed red lines indicating the transition bands and unity gain (0 in dB) over the
passband.

 Design a Filter Using fdesign

3-5

3 Design a Filter with fdesign and Filter Builder

3-6

Design a Filter Using Filter Builder
Filter Builder presents the option of designing a filter using a GUI dialog box as opposed to the
command line instructions. You can use Filter Builder to design the same bandpass filter designed in
the previous section, “Design a Filter Using fdesign” on page 3-3

Example 3.2. Design a Simple Filter in Filter Builder

To design the filter using the Filter Builder GUI:

1 Type the following at the MATLAB prompt:

filterBuilder
2 Select Bandpass filter response from the list in the dialog box, and hit the OK button.
3 Enter the correct frequencies for Fpass2 and Fstop2, then click OK. Here the specification uses

normalized frequency, so that the passband and stopband edges are expressed as a fraction of
the Nyquist frequency (in this case, 48/2 kHz). The following message appears at the MATLAB
prompt:

The variable 'Hbp' has been exported to the command window.

If you display the Workspace tab, you see the object Hbp has been placed on your workspace.
4 To check your work, plot the filter magnitude response using the Filter Visualization tool. Verify

that all the design parameters are met:

fvtool(Hbp) %plot the filter magnitude response

 Design a Filter Using Filter Builder

3-7

Note that the dashed red lines on the preceding figure will only appear if you are using the DSP
System Toolbox software.

3 Design a Filter with fdesign and Filter Builder

3-8

Filter Design with the Filter Designer
App

• “Introduction” on page 4-2
• “Designing the Filter” on page 4-3
• “Analyzing the Filter” on page 4-6
• “Designing Additional Filters” on page 4-8
• “Viewing and Annotating the Filter” on page 4-9
• “Exporting Filters from Filter Designer” on page 4-13
• “Designing Filters Using Command Line Functions” on page 4-16

4

Introduction
This section describes how to graphically design and implement digital filters using Signal Processing
Toolbox. Filter design is the process of creating the filter coefficients to meet specific frequency
specifications. Filter implementation involves choosing and applying a particular filter structure to
those coefficients. Only after both design and implementation have been performed can your data be
filtered.

This section includes a brief discussion of applying the completed filter design and filter
implementation using MATLAB command line functions, such as filter.

4 Filter Design with the Filter Designer App

4-2

Designing the Filter
This section is a step-by-step introduction to using the Filter Designer app to design an octave-band
filter. An octave is the interval between two frequencies having a ratio of 2:1. An octave-band filter is
a bandpass filter with high cutoff frequency approximately twice that of the low cutoff frequency. The
class of an octave filter is determined by its allowable passband ripple and its stopband attenuation.
Refer to the ANSI S1.11–2004 standard for more information.

1 Start the app from the MATLAB command line.

filterDesigner

The app opens with a default filter. Its filter information is summarized in the upper left (Current
Filter Information) and its filter specifications are depicted in the upper right. In addition to
displaying filter specification, this upper right pane displays filter responses and filter
coefficients.

The bottom half of the app shows the Filter Design panel, where you specify the filter
parameters. Other panels, such as Import filter from workspace and Pole/Zero Editor, which you
access with the buttons on the lower left, are also displayed in this area. If you have other
products installed, you may see additional buttons.

Note that when you open the app, Design Filter is not enabled. You must make a change to the
default filter design in order to enable Design Filter. This is true each time you want to change
the filter design. Changes to radio button items or drop down menu items such as those under
Response Type or Filter Order enable Design Filter immediately. Changes to specifications in
text boxes such as Fs, Fpass, and Fstop require you to click outside the text box to enable
Design Filter.

2 In the Response Type pane, select Bandpass.
3 In the Design Method pane, select IIR, and then select Butterworth from the selection list.

 Designing the Filter

4-3

4 For the Filter Order, select Specify order, and then enter 6.

5 Set the Frequency Specifications as follows:

Parameter Setting Description
Units Hz Units for the parameters
Fs 48000 Sampling frequency
Fc1 22 First cutoff frequency (i.e., the frequency

preceding the passband at which the magnitude
response is 3 dB below the passband gain)

Fc2 45 Second cutoff frequency (i.e., the frequency
following the passband at which the magnitude
response is 3 dB below the passband gain)

6 After specifying the filter design parameters, click the Design Filter button at the bottom of the
design panel to compute the filter coefficients. The display updates to show the magnitude
response of the designed filter.

4 Filter Design with the Filter Designer App

4-4

Notice that the Design Filter button is disabled after you compute the coefficients for your filter
design. This button is enabled again if you make any changes to the filter specifications.

7 Click the Store Filter button.

8 In the Store Filter dialog, change the filter name to Bandpass Butterworth-1 and click OK to
save the filter in the Filter Manager.

`

 Designing the Filter

4-5

Analyzing the Filter
After designing the filter, you can view the following filter responses in the display region by clicking
on the associated toolbar button or by selecting the desired response from the Analysis menu.

Response Toolbar Button Image
Filter specifications

Magnitude response

Phase response

Magnitude and Phase responses

Group delay

Phase delay

Impulse response

Step response

Pole-zero plot

Filter coefficients

Filter information

Note Other analyses are available if you have the DSP System Toolbox product installed.

1 Examine the displayed magnitude response of the filter.
2 Display other responses, as desired. Click the appropriate buttons, shown in the table above or

select the desired response from the Analysis menu.
3 Click the Filter coefficients button to display the filter coefficients.

4 Filter Design with the Filter Designer App

4-6

 Analyzing the Filter

4-7

Designing Additional Filters
You have designed one of the bands of an octave filter bank. This section shows you how to design
and save the other nine bands. The following table defines the parameters for the remaining bands.
Note that all of the bands use these parameters: Bandpass, IIR – Butterworth , order = 6, Fs =
48000 Hz .

Fc1 Fc2 Filter Name
45 89 Bandpass Butterworth-2
89 178 Bandpass Butterworth-3
178 355 Bandpass Butterworth-4
355 708 Bandpass Butterworth-5
708 1413 Bandpass Butterworth-6
1413 2818 Bandpass Butterworth-7
2818 5623 Bandpass Butterworth-8
5623 11220 Bandpass Butterworth-9
11220 22387 Bandpass Butterworth-10

1 Using the parameters listed in the table above, for each table row, set the appropriate the Fc1
and Fc2 values.

2 Design the filter by clicking the Design Filter button.
3 Click Store Filter to save the filter.
4 Change the name to the appropriate filter name shown in the table above.
5 Repeat these steps until all 10 filters are designed and stored.

4 Filter Design with the Filter Designer App

4-8

Viewing and Annotating the Filter
In this section...
“Viewing the Filter in FVTool” on page 4-9
“Using FVTool for Annotation” on page 4-12

Viewing the Filter in FVTool
This section teaches you how to use the Filter Visualization Tool (FVTool) to view the octave-band
filter. It also describes how to annotate your filter.

1 Click the Filter Manager button to display the Filter Manager, which lists your saved filters.

2 Press Ctrl+click on each filter name to select all the filters, and then click FVTool. FVTool opens
with the filter responses overlaid for easy comparison. (If you want to view a single filter in
FVTool, click the Full View Analysis button when that filter is shown in the app’s display panel
or select View > Filter Visualization Tool).

3 Change the x-axis scale to logarithmic by selecting Analysis > Analysis Parameters to display
the Analysis Parameters dialog.

4 Change the Frequency Scale to Log.

 Viewing and Annotating the Filter

4-9

5 Click OK.

6
Click the Legend button to turn on the legend, which you can drag to the desired location.

4 Filter Design with the Filter Designer App

4-10

7 Click the Legend button again to turn off the legend.

Use the Zoom button and drag a rectangle around the first few passbands to zoom in.

 Viewing and Annotating the Filter

4-11

8
Click the Restore Default View button to return to the full view.

9 Display other responses, as desired. (The FVTool Analysis toolbar buttons and Analysis menu are
the same as in Filter Designer. See “Analyzing the Filter” on page 4-6 for descriptions of the
buttons.

Using FVTool for Annotation
FVTool is also useful for doing further analysis, adding annotations, and printing. Available
annotations include adding rectangles, text boxes, arrows and lines, and adding data tips.

Note Do not close Filter Designer at this time. You will use it in future sections.

1 Use the toolbar buttons to annotate your response plot. Add a line by clicking one of the line
buttons, and then use your mouse to draw the line on your plot.

2 Add a data tip by clicking on a plot at the desired point. The data tip shows the frequency and
magnitude at that point.

3 Close FVTool by selecting File > Close.

4 Filter Design with the Filter Designer App

4-12

Exporting Filters from Filter Designer
The Filter Designer app provides a simple way to create filter objects (dfilts) from your filter
designs. This is particularly useful for saving your filter design to the MATLAB workspace for use
with command line functions. You can also save your filters as MATLAB code by using File >
Generate MATLAB code to run in scripts or batch files.

1 In Filter Designer, click Filter Manager and highlight only the Bandpass Butterworth-1
filter.

2 Select File > Export.
3 Set Export to to Workspace. Set Export as to Objects. In Discrete Filter type Hd1. Click

Export to export the first filter in your filter bank to an Hd1 dfilt object in the workspace.

4 Repeat steps 1 through 3 for each of the remaining nine filters. Highlight each filter individually
to make it the active filter and change the Discrete Filter name to match the filter number.
When you finish you will have 10 dfilt objects in the workspace.

5 Close the app by selecting File > Close.
6 On the MATLAB command line, verify that your objects were exported by using the whos

command.

whos
 Name Size Bytes Class Attributes

 Hd1 1x1 dfilt.df2sos
 Hd10 1x1 dfilt.df2sos
 Hd2 1x1 dfilt.df2sos
 Hd3 1x1 dfilt.df2sos
 Hd4 1x1 dfilt.df2sos
 Hd5 1x1 dfilt.df2sos
 Hd6 1x1 dfilt.df2sos
 Hd7 1x1 dfilt.df2sos
 Hd8 1x1 dfilt.df2sos
 Hd9 1x1 dfilt.df2sos

 Exporting Filters from Filter Designer

4-13

Filtering with dfilt
1 Type the following on the MATLAB command line to concatenate your filter bank filter objects

into a single dfilt object.

Hd = [Hd1 Hd2 Hd3 Hd4 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10];
2 To view the first filter, type Hd(1).

Hd(1)

ans =
 FilterStructure: 'Direct-Form II, Second-Order Sections'
 sosMatrix: [3x6 double]
 ScaleValues: [3.40097054256801e-009;1;1;1]
PersistentMemory: false

3 A number of methods can be used to view and manipulate the Hd1 dfilt object. Try the info
command:

info(Hd1) % Displays filter information

Discrete-Time IIR Filter (real)

Filter Structure : Direct-Form II, Second-Order Sections
Number of Sections : 3
Stable : Yes
Linear Phase : No

4 You can open FVTool from the MATLAB command line and specify display parameters as follows.

F = fvtool(Hd,'Analysis','magnitude') % Open FVTool with
 % magnitude display
set(F,'FrequencyScale','Log') % Change to log scale

This produces the same display as step 5 of “Viewing the Filter in FVTool” on page 4-9.
5 Now using the MATLAB command line, create some discrete white Gaussian noise data, which

you can then filter using the filter bank.

rand; % Initialize random number generator
Nx = 100000; % Number of noise data points
xw = randn(Nx,1); % Create white noise
for i=1:10,
 yw(:,i)=filter(Hd(i),xw); % Filter the white noise through
end % the entire filter bank.
 % (:,i) means all rows of column i

6 Plot the filtered data.

plot(yw)

4 Filter Design with the Filter Designer App

4-14

 Exporting Filters from Filter Designer

4-15

Designing Filters Using Command Line Functions
You can specify and design filters at the command line using designfilt. The use of designfilt
provides a powerful and efficient way to specify and implement digital filters.

As an example, consider a lowpass filter for data sampled at 20 kHz. The desired passband frequency
is 1 kHz with a stopband frequency of 1.2 kHz. Limit the passband ripple to 1 dB and require 60 dB of
attenuation between the passband and stopband frequencies.

Fs = 20000;
Fp = 1000;
Fst = 1200;
Ap = 1;
Ast = 60;

Design an equiripple FIR filter and a Butterworth IIR filter.

FIR = designfilt('lowpassfir', ...
 'PassbandFrequency',Fp,'StopbandFrequency',Fst, ...
 'PassbandRipple',Ap,'StopbandAttenuation',Ast, ...
 'DesignMethod','equiripple','SampleRate',Fs);

IIR = designfilt('lowpassiir', ...
 'PassbandFrequency',Fp,'StopbandFrequency',Fst, ...
 'PassbandRipple',Ap,'StopbandAttenuation',Ast, ...
 'DesignMethod','butter','SampleRate',Fs);

Display the magnitude responses of the filters.

hfvt = fvtool(FIR,IIR);
legend(hfvt,'FIR','IIR')
axis([0 2 -70 10])

4 Filter Design with the Filter Designer App

4-16

See Also
Apps
Filter Designer

Functions
FVTool | designfilt

 Designing Filters Using Command Line Functions

4-17

	Overview
	Signal Processing Toolbox Product Description
	Key Features

	Basic Signal Processing Concepts
	Representing Signals
	Numeric Arrays
	Vector Representation

	Waveform Generation: Time Vectors and Sinusoids
	Impulse, Step, and Ramp Functions
	Common Periodic Waveforms
	Common Aperiodic Waveforms
	The pulstran Function
	The Sinc Function
	The Dirichlet Function
	Working with Data
	Data Precision

	Selected Bibliography

	Design a Filter with fdesign and Filter Builder
	Filter Design Process Overview
	Design a Filter Using fdesign
	Design a Filter Using Filter Builder

	Filter Design with the Filter Designer App
	Introduction
	Designing the Filter
	Analyzing the Filter
	Designing Additional Filters
	Viewing and Annotating the Filter
	Viewing the Filter in FVTool
	Using FVTool for Annotation

	Exporting Filters from Filter Designer
	Filtering with dfilt

	Designing Filters Using Command Line Functions

